Ivan Matić

 Google scholar

Associate Professor
Department of Mathematics
Josip Juraj Strossmayer University of Osijek
Trg Ljudevita Gaja 6
Osijek, HR-31000, Croatia¸
phone: +385-31-224-800
fax: +385-31-224-801
email:  imatic @ mathos.hr
office:  12 (ground floor)

 


Research Interests

Representation theory of p-adic groups
Langlands program
Theta correspondence

Degrees

PhD in theoretical mathematics, Department of Mathematics, University of Zagreb , 2010.
BSc in Mathematics and Computer Science Education, Department of Mathematics, University of Osijek, 2010.
BSc in Mathematics, Department of Mathematics, University of Zagreb, 2004.
 

Publications

 
Journal Publications

  1. I. Matić, Aubert duals of strongly positive discrete series and a class of unitarizable representations, Proceedings of the American Mathematical Society 145/8 (2017), 3561-3570
    Let G_n denote either the group Sp(n, F) or SO(2n + 1, F) over a local non-archimedean field F. We explicitly determine the Aubert duals of strongly positive discrete series representations of the group G_n. This enables us to construct a large class of unitarizable representations of this group.
  2. I. Matić, Composition factors of a class of induced representations of classical p-adic groups, Nagoya Mathematical Journal 227 (2017), 16-48
    We study induced representations of the form $delta_1 times delta_2 rtimes sigma$, where $delta_1, delta_2$ are irreducible essentially square-integrable representations of general linear group and $sigma$ is a strongly positive discrete series of classical $p$-adic group, which naturally appear in the non-unitary dual. Employing certain conditions on $delta_1$ and $delta_2$, we determine complete composition series of such induced representation.
  3. I. Matić, On Langlands quotients of the generalized principal series isomorphic to their Aubert duals, Pacific Journal of Mathematics 289/2 (2017), 395-415
    We determine under which conditions is the Langlands quotient of an induced representation of the form $delta rt sigma$, where $delta$ is an irreducible essentially square-integrable representation of a general linear group and $sigma$ is a discrete series representation of the classical $p$-adic group, isomorphic to its Aubert dual.
  4. I. Matić, On Jacquet Modules of Discrete Series: the First Inductive Step, Journal of Lie Theory 26/1 (2016), 135-168
    The purpose of this paper is to determine Jacquet modules of discrete series which are obtained by adding a pair of consecutive elements to the Jordan block of an irreducible strongly positive representation such that the $epsilon$-function attains the same value on both elements. Such representations present the first inductive step in the realization of discrete series starting from the strongly positive ones. We are interested in determining Jacquet modules with respect to the maximal standard parabolic subgroups, with an irreducible essentially square-integrable representation on the general linear part.
  5. I. Matić, First occurrence indices of tempered representations of metaplectic groups, Proceedings of the American Mathematical Society 144/7 (2016), 3157-3172
    We explicitly determine the first occurrence indices of tempered representations of metaplectic groups over a non-archimedean local field of characteristic zero with odd residual characteristic.
  6. I. Matić, On discrete series subrepresentations of the generalized principal series, Glasnik Matematički 51/1 (2016), 125-152
    We study a family of the generalized principal series and obtain necessary and sufficient conditions under which the induced representation of studied form contains a discrete series subquotient. Furthermore, we show that if the generalized principal series which belongs to the studied family has a discrete series subquotient, then it has a discrete series subrepresentation.
  7. I. Matić, M. Tadić, On Jacquet modules of representations of segment type, Manuscripta Mathematica 147/3 (2015), 437-476
    Let $G_{n}$ denote either the group $Sp(n, F)$ or $SO(2n+1, F)$ over a local non-archimedean field $F$. We study representations of segment type of group $G_{n}$, which play a fundamental role in the constructions of discrete series, and obtain a complete description of the Jacquet modules of these representations. Also, we provide an alternative way for determination of Jacquet modules of strongly positive discrete series and a description of top Jacquet modules of general discrete series.
  8. I. Matić, Strongly positive representations in an exceptional rank-one reducibility case (an appendix to: 'Strongly positive representations of GSpin_{2n+1} and the Jacquet module method' by Yeansu Kim), Mathematische Zeitschrift 279/1-2 (2015), 271-296
    We obtain some results on the strongly positive discrete series in an exceptional rank-one reducibility case. Such results appear to be important for the classification of strongly positive representations for GSpin groups.
  9. I. Matić, Strongly positive subquotients in a class of induced representations of classical $p$-adic groups, Journal of Algebra 444 (2015), 504-526
    We determine under which conditions the induced representation of the form $delta_{1} times delta_{2} rtimes sigma$, where $delta_{1}, delta_{2}$ are irreducible essentially square integrable representations of a general linear group and $sigma$ is a discrete series representation of classical $p$-adic group, contains an irreducible strongly positive subquotient.
  10. I. Matić, Discrete series of metaplectic groups having generic theta lifts, Journal of the Ramanujan Mathematical Society 29/2 (2014), 201-219
    We prove that a discrete series representations of metaplectic group over a non-archimedean local field has a generic theta lift on the split odd orthogonal tower if and only if it is generic. Also, we determine the first occurrence indices of such representations and describe the structure of their theta lifts.
  11. I. Matić, Jacquet modules of strongly positive representations of the metaplectic group $widetilde{Sp(n)}$, Transactions of the American Mathematical Society 365 (2013), 2755-2778
    Strongly positive discrete series represent a particularly important class of irreducible square-integrable representations of $p$-adic groups. Indeed, these representations are used as basic building blocks in known constructions of general discrete series. In this paper, we explicitly describe Jacquet modules of strongly positive discrete series. The obtained description of Jacquet modules, which relies on the classification of strongly positive discrete series given in our previous work, is valid in both classical and metaplectic case. We expect that our results, besides being interesting by themselves, should be relevant to some potential applications in the theory of automorphic forms, where both representations of metaplectic groups and structure of Jacquet modules play an important part.
  12. I. Matić, The conservation relation for discrete series representations of metaplectic groups, International Mathematics Research Notices 2013/22 (2013), 5227-5269
    Let $F$ denote a non-archimedean local field of characteristic zero with odd residual characteristic and let $widetilde{Sp(n)}$ denote the rank $n$ metaplectic group over $F$. If $r^{pm}(sigma)$ denotes the first occurrence index of the irreducible genuine representation $sigma$ of $widetilde{Sp(n)}$ in the theta correspondence for the dual pair $(widetilde{Sp(n)},O(V^{pm}))$, the conservation relation, conjectured by Kudla and Rallis, states that $r^{+}(sigma)+r^{-}(sigma)=2n$. A purpose of this paper is to prove this conjecture for discrete series which appear as subquotients of generalized principle series where the representation on the metaplectic part is strongly positive. Also, we prove this relation for many tempered but non-square integrable and non-tempered irreducible subquotients of such representations. Assuming the basic assumption, we prove the conservation relation for general discrete series of metaplectic groups.
  13. I. Matić, Theta lifts of strongly positive discrete series: the case of ($widetilde{Sp(n)}$, O(V)), Pacific Journal of Mathematics 259/2 (2012), 445-471
    Let $F$ denote a non-archimedean local field of characteristic zero with odd residual characteristic. Using the results of Gan and Savin, in this paper we determine the first occurrence indices and theta lifts of strongly positive discrete series representations of metaplectic groups over $F$ in terms of our recent classification of this class of representations. Also, we determine the first occurrence indices of some strongly positive representations of odd orthogonal groups.
  14. I. Matić, Strongly positive representations of metaplectic groups, Journal of Algebra 334 (2011), 255-274
    In this paper, we obtain the classification of irreducible strongly positive square-integrable genuine representations of metaplectic groups over $p$-adic fields, using purely algebraic approach. Our results parallel those of M{oe}glin and Tadi'{c} for classical groups, but their work relies on certain conjectures. On the other side, our results are complete and there are no additional conditions or hypothesis. The important point to note here is that our results and technics can be used in the case of classical $p$-adic groups in completely analogous manner.
  15. F.M. Brueckler, I. Matić, The power and the limits of the abacus, Mathematica Pannonica 22/1 (2011), 25-48
    The abacus is a well-known calculating tool with a limited number of place-holders for digits of operands and results. Given a number of rods $n$ of the abacus, a chosen basis of the number system and the first operand $a$, this paper deals with the possible values of the other operand $b$ in the four basic arithmetic operations performed with integers on the abacus. For division we identify several subcases, depending on $n$ and the number of digits $delta_B(a)$ of $a$. If $a$ cannot be divided by all $bleq a$, the number $delta_B(a)$ is called critical. For numbers with the minimal critical number of digits $N_n=lfloorfrac{n-4}{3}rfloor+1$ we explicitly determine the values of the maximal divisor $b_{max}$ such that the division $a:b_{max}$ can be performed.
  16. I. Matić, Composition series of the induced representations of SO(5) using intertwining operators, Glasnik Matematički 45/1 (2010), 93-107
    Let $F$ be a p-adic field of characteristic zero. We determine the composition series of the induced representations of $SO(5,F)$.
  17. M. Hanzer, I. Matić, Irreducibility of the unitary principal series of $p$-adic $widetilde{Sp(n)}$, Manuscripta Mathematica 132 (2010), 539-547
    Let $F$ be a p-adic field. We prove irreducibility of the unitary principal series of the group $widetilde{Sp(n)}$ over $F$.
  18. M. Hanzer, I. Matić, The unitary dual of $p$-adic $widetilde{Sp(2)}$, Pacific Journal of Mathematics 248/1 (2010), 107-137
    We investigate the composition series of the induced admissible representations of the metaplectic group $widetilde{Sp(2)}$ over a $p$-adic field $F.$ In this way, we determine the non-unitary and unitary duals of $widetilde{Sp(2)}$ modulo cuspidal representations.
  19. I. Matić, The unitary dual of $p$-adic SO(5), Proceedings of the American Mathematical Society 138/2 (2010), 759-767
    Let $F$ be a p-adic field of characteristic zero. We investigate the composition series of the parabolically induced representations of SO(5,F) and determine the non-cuspidal part of the unitary dual of $SO(5,F)$.
  20. I. Matić, Levi subgroups of $p$-adic Spin(2n+1), Mathematical Communications 14/2 (2009), 223-233
    We explicitly describe Levi subgroups of odd spin groups over algebraic closure of a p-adic field.


Refereed Proceedings

  1. A. Katalenić, Lj. Jukić Matić, I. Matić, Approaches to learning mathematics in engineering study program, Mathematics and children, 4th International Scientific Colloquium, Osijek, Hrvatska, 2013, 186-195
  2. Lj. Jukić Matić, I. Matić, Educating future mathematics teachers: Repeating mathematics from primary and secondary school, Mathematics and children, 3rd International Scientific Colloquium, Osijek, Hrvatska, 2011, 27-34


Others

  1. I. Matić, Lj. Jukić Matić, Dnevnik malog Medića, Osječki matematički list 17/1 (2017), 89-94
  2. Lj. Jukić Matić, I. Matić, Obitelj Medić u posjetu zoološkom vrtu, Osječki matematički list 16/1 (2016), 93-98
  3. I. Matić, Lj. Jukić Matić, Shopping, Osječki matematički list 16/2 (2016), 91-94
  4. Lj. Jukić Matić, I. Matić, Ključevi, Osječki matematički list 15/2 (2015), 60-67
  5. Lj. Jukić Matić, I. Matić, Lov na blago, Osječki matematički list 15/1 (2015), 95-98
  6. Lj. Jukić Matić, I. Matić, M. Pavlović, Geometrija i Sherlock Holmes, Matematika i škola 75 (2014), 195-201
  7. Lj. Jukić Matić, I. Matić, Obitelj Medić se priprema za odlazak u svatove, Osječki matematički list 14 (2014), 169-174
    Zanimljivi zadatci uklopljeni u priču o obitelji Medić.
  8. M. Libl, I. Matić, Plimpton 322, Matematika i škola 73 (2014), 114-118
  9. Lj. Jukić Matić, I. Matić, Priprema za državnu maturu obitelji Medić, Osječki matematički list 14/1 (2014), 77-81
  10. Lj. Jukić Matić, I. Matić, Gozba obitelji Medić, Osječki matematički list 13/2 (2013), 191-194
  11. Lj. Jukić Matić, I. Matić, Ljetovanje obitelji Medić, Osječki matematički list 13/1 (2013), 84-90
  12. Lj. Jukić Matić, I. Matić, Put djeda mraza, Osječki matematički list 13/1 (2013), 101-105
  13. S. Bingulac, I. Matić, Kineski teorem o ostatcima za polinome, Osječki matematički list 12/2 (2012), 105-126
  14. Lj. Jukić Matić, I. Matić, Role of the competitions in the curricula of teaching computer science, Croatian Journal of Education 13/3 (2011), 201-231
  15. D. Ševerdija, I. Matić, Grčko - kineski stil u teoriji brojeva, Osječki matematički list 10/1 (2010), 43-58
  16. D. Ševerdija, I. Matić, Metodički aspekti abakusa II, Matematika i škola 53 (2010), 106-111
  17. D. Ševerdija, I. Matić, Metodički aspekti abakusa I, Matematika i škola 52 (2009), 57-62
  18. I. Matić, D. Ševerdija, S. Škorvaga, Numerička ograničenja kineskog abakusa, Osječki matematički list 9 (2009), 75-91
    We present some aspects of numerical constraints using chinese abacus in standard arithmetic operations with natural numbers.
  19. I. Matić, Modalna logika i Fittingova nomenklatura, Poučak 36 (2008)


Books

  1. Lj. Jukić Matić, I. Matić, Priručnik za nastavu matematike, Odjel za matematiku, Sveučilište J.J. Strossmayera, Osijek, 2017.
  2. I. Matić, Uvod u teoriju brojeva, Sveučilište Josipa Jurja Strossmayera u Osijeku - Odjel za matematiku, Osijek, 2015.


Technical Reports

  1. Y. Kim, I. Matić, Classification of strongly positive representations of even general unitary groups (2018)
  2. Y. Kim, I. Matić, Discrete series of odd general spin groups (2017)
  3. I. Matić, Aubert duals of discrete series: the first inductive step (2016)


 


Projects

  • Composition series of induced representations of classical p-adic groups       (Project run in 2015, supported by University of Osijek.)
  • Bilateral project Croatia - Austria: Cohomology of arithmetic groups and automorphic forms (Project leaders: Neven Grbac and Joachim Schwermer)
  • Discrete series in generalized principal series 

    (Project run in 2013/14, supported by University of Osijek.) 

  • Automorphic forms, representations and applications

    (Project leader: Goran Muić. Project was funded in 2014 by the Croatian Science Foundation.)

  • Unitary representations and automorphic forms
    (Project leader: Marko Tadić. Project was funded in 2008 by the Croatian Science Foundation.) 

Professional Activities

Editorial Boards

 Mathematical Communications

 Osječki matematički list  


 

Committee Memberships

 Member of American Mathematical Society (AMS) and Croatian Mathematical Society (HMD)


 

Refereeing/Reviewing

Zentralblatt MATH  (since 2010)

Mathematical Reviews  (since 2011)


 

Service Activities

Član povjerenstava za stručnu prosudbu udžbenika iz matematike za osnovnu i srednju školu, 2013./2014.

Predavač na 3. stručno-metodičkom skupu Nastava matematike i izazovi moderne tehnologije udruge Normala, s predavanjem na temu Brojevni sustavi.

Član skupine ocjenjivača koja je odredila rang prolaznosti na državnoj maturi iz matematike u 2009./2010. godini.

Festival znanosti:

   2009. radionica - Abakus, prvo računalo

   2010. radionica - Kako sakriti poruku od ostatka Zemlje?

   2011. radionica - Pobjedničke strategije

   2012. predavanja - Brojevni sustavi

   2014. radionica - Što ako netko otkrije valove vaših poruka?

Član izvršnog odbora Udruge matematičara Osijek

Zimska škola matematike:

   2005. predavanje - Fibonaccijevi brojevi

   2010. radionica - O jednom zaboravljenom pomagalu pri računanju

Coolmath (V. gimnazija Zagreb):

   2010. radionica - Kako i zašto raditi na abakusu


Teaching

Nastavne aktivnosti u akademskoj godini 2014./2015.:

  Vektorski prostori

  Kriptografija i sigurnost sustava

  Algebra

  Učenička matematička natjecanja

  Konkretna matematika

  Diplomski seminar

  Matematika 1 (Građevinski fakultet)

  Matematika 2 (Građevinski fakultet)

Nastavne aktivnosti u prošlosti:

  Uvod u teoriju brojeva - udzbenik

Konzultacije (Office Hours): Po dogovoru.

Teme diplomskih i završnih radova.

Mentorstva diplomskih i završnih radova.


Links

Math links:

Seminar za unitarne reprezentacije i automorfne forme

lanl.arXiv.org

Mathematical Reviews

MR Lookup

Zentralblatt Math

Mathematical Communications

Colleagues:

 Neven Grbac

 Marcela Hanzer

 Goran Muić

 Marko Tadić

 

Personal